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Liouville quantum mechanics on a lattice from geometry of 
quantum Lorentz group 

M A Olshanetskyt§ and V-B K Rogovt 
t Institute of Thearetical and Experimental Physics, 117259 Moscow, Russia 
t Moscow Railway Engineenng Institute. 103055 Moscow, Russia 

Received 5 January 1994 

Abstract. We consider the quantum Lobachevsky space U,:. which is defined as a subalgebra 
of the Hopf algebra &(SLz(@)).  The lwasawa decomposition of d, , (SL1(6))  introduced 
by Podles and Woronowlcz allows us to consider the quantum andogue of the horospheric 
CaOrdiNm on U:. The action of the Casimir element. which belongs to the dual to 4 
quantum group Uq(SLz(C)). on some subspace in Li in these coordinates leads to a second- 
order difference operator on the infinite one-dimensional lattice. In the continuous limit q + 1 It  
is transformed into the Schrcdinger Hamiltonian, which describes zero modes into the Liouville 
field theory (the Liouville quantum mechanics). We calculate the specuum (Brillouin zones) 
and the eigenfmctions of fhis operator. They are q-continuous Hermite polynomials, which 
are particular cases of the Macdonald or Rogers-Askey-lnmail polynomials. The scattering in 
this problem corresponds to the scattering of the first two-level dressed excitations in the ZN 
model in the very peculiar limit when the misotropy parameter y and N -+ M. or, equivalently, 
(v ,  N) --* 0. 

1. Introduction 

There are a lot of inter-relations between integrable one-dimensional systems of particles 
and integrable zD field theories. One of them is the similarity in dynamics between solitons 
and the classical Calogero-MoserSutherland-Toda particles [I]. On a quantum level a 
similar phenomenon has been observed recently in [Z,3]11. In particular, using results of 
[4], it was discovered there that the scattering of some special excitations in the 22-Baxter 
model coincides with the scattering, which is defined by asymptotics of the Macdonald 
polynomials for the root system A I  [5 ] .  They depend on two parameters and in the simplest 
case define the usual zonal spherical functions on reducible symmetric spaces of rank one. 

Recall that the zonal spherical functions are defined as a normalized eigenfunctions of 
the Laplace-Beltrami operator on a symmetric space, which are invariant with respect to 
a stationary subgroup and have a free asymptotic. In other words, the Laplace-Beltrami 
operator in the spherical coordinates coincides up to a simple gauge transformation with 
the generalized Calogero-MoserSutherland potential [6]. The corresponding Jost function 
is the famous Harishxhandra c-function [7 ] ,  which is factorizable [SI. This fact is in 
agreement with the complete integrability of the Calogero-Mozer-Sutherland systems. In 
particular, the Jost functions for a symmemc non-compact space of rank one give rise to the 
scattering of a quantum particle on a semi-line on the Calogero-Moser potential g2/sinhZx. 

5 e-maii: OLSHANF,Z@VXDESY,DESY.DE 
I/ Quantum dynamics was discussed pmiy in [ I ] ,  
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The same S-matrix arises in the scattering of two kinks in the XXX-model. In a similar 
fashion, the XXZmodel corresponds to the quantum symmehic space of rank one. But in 
this case the continuofis semi-line is replaced on a semi-indefiuite lattice. 

To open quantum Toda Hamiltonian can be derived in  a similar way [6,9]. To this 
end the same Laplace-Beltrami operator is considered in the horospherical coordinates. 
If its eigenfunctions are independent on the horospherical 'angular' coordinates, then the 
Laplace-Beltrami operator is reduced to a second-order differential operator with constant 
coefficients. But if the functions have a non-trivial multiplier when their arguments are 
shifted along horospheres (more exactly, they belong to a representation, induced by a 
character of a nilpotent subgroup), then the Laplace-Beltrami operator acquires a non-trivial 
potential term. which is nothing other than the open Toda potential. The corresponding 
eigenfunctions are called the Whitteker functions [IO, 111. It was proved in 191 that the 
corresponding Jost functions are also factorizable. The simplest SL2 case describes the 
scattering on the Liouville potential e-k. 

We can consider this model as a simplified version of the ubiquitous Liouville field 
theory, for @ ( U ,  f) (the zero mode ~ ( f )  = @(U,  t ) l n = ~ ) ,  which describes 2D induced gravity 
in the conformal gauge. Then e-2r defines the circumference of a ID 'universe'. The 
quantum mechanics of the zero modes sheds light on the spectrum of the full theory in the 
quasiclassical approach [ 121. 

Our aim is to put this theory on a lattice. In other words, x will take discrete values. 
There are a few reasons for doing this. First of all, introducing the new parameter-the step 
of a lattice-is equivalent to the generalizations of corresponding spin chain Lagrangians. 
Next, this model in the ZD version modifies ZD gravity in a similar fashion to a finite- 
group approximation of gauge groups in the Yang-Mills theories. This modification of ZD 
gravity can be in principle useful in the quantization procedure. Finally, classical solutions 
of models on lattices may lead presumably to deformed tau functions connected with new 
integrable hierarchies, as well as to partition functions of some topological theories. 

Here we consider the very simple quantum theory, which turns out to be exactly 
solvable. To derive the model we proceed to 'the second quantization' of the Liouville 
quantum mechanics using the formalism of quantum groups. Namely, we consider the 
quantum Lobachevsky space Li. It is defined as a subalgebra IL; of the Hopf algebra 
A,(SLz(C)), which is dual to the quantum Lorentz group U,(SLdC) ) .  The algebra L: 
is equipped with the right U,(SL&))-module structure. In L: exists an analogue of the 
horospherical coordinates, which are connected with the Iwasawa decomposition of A, [ 131. 
We calculate the Casimir element 52, E U,(SLz(@)) in these coordinates. It is possible to 
reduce the operator to a subspace which is similar to the space of the induced representation 
of the nilpotent subgroup in the classical situation. The quantum horospherical variables are 
separated in this subspace. The operator 52, becomes a classical second-order difference 
operator on a one-dimensional lattice with the Liouville 'wall'. It differs slightly from 
relativistic Liouville, introduced in [14]. In the limit, when a step of the lattice vanishes, 
S2q[(,+l) coincides with the Liouville Hamiltonian. The quantum Whitteker functions are 
the q-continuous Hermite polynomials, which are a particular case of the Rogers-Askey- 
Ismail polynomials [15], or the Macdonald polynomials for the A1 root system [5 ] .  Thus, 
the Macdonald polynomials in this case serve also to define the Whitteker functions, as well 
as the zonal spherical functions. 

The H'uish-Chandra c-function gives rise to the S-matrix, which coincides with the 
S-matrix for scattering of the first two levels in the .+model [I61 in  the limit N ,  y --f 00, 

where y is an anisotropy parameter, or, equivalently, N ,  y -+ 0. 
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2. Classical case 

Let L.' = SU2\SL2(C) be is a homogeneous space of the second-order unimodular 
Hermitian positive definite matrices, which is a model of the classical Lobachevsky space. 
Let 

Then any x E L3 can be represented as 

The Iwasawa decomposition 

g = kb g E SLz(C)  k E SU2 b E AN - Borel subgroup 

allows us to define the horospherical coordinates on L3. If 

then from (1) 

The triple (H = i h , z , Z )  is uniquely determined 
coordinates of x .  It foUows from (1) and (3) that 

Let 

(3) 

by x. It is called the horospherical 

0 0  0 0  
c=(1  0) D = ( o  1) 

be the generators of the Lie algebra gl2 and dA,  ds, dc and dD = -da be the comesponding 
Lie operators of the right shift on lL3. In  the horospherical coordinates they take the form 

da = IHaH I - za, dD = -dA ds = a, dc = H Z ~ ~  - z2a,  + P a i .  (4) 

The second Casimir 

W = d i  t dg t d s d c  t dcdB (5 )  
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i n  the horospherical coordinates takes the form 

M A  Olshanetsky and V-B K Rogov 

R = fHZa i  + ;Ha" +2H-2i3:2 

Consider the eigenvalue problem 

I ?n%,(H, Z, e) = -(Az + $)Oi(H. Z, I) 

and put 

Q~(H, z, i) = H-' expilr(z + i ) h ( ~ )  

where expi!& -I- E )  can be consider as a unitary character of the nilpotent subgroup N. 
Then for x = 4 log H and * A ( x )  = &(H) ,  equation (7) is mansformed to 

(-ad$ + 4p2e-4x)Q(~) = 4AZ%(x). 

The solution to this equation 

* A ( x )  = k z i i ( 2 w - 9  

is the Bessel-Macdonald function with the asymptotic behaviour 

This solution is the so-called Whitteker function for SLz(@) [IO, 111. The two-body S- 
matrix 

r(l + 2iA) 
r(l - 2iA) 

S(A) = 

which is obtained from (10) describes the scattering of a quantum particle on the Liouville 
'wall' e-4x. 

3. Quantum Lobachevsky space 

Let A,(SLz(C)) (0 < q 6 1)  be the algebra of functions on SL2(@) [13], which is 
defined as the factor algebra of the associate Calgebra with generators cy, p, y. 6,  with an 
antbinvolution *: R, + Ap, (ab)' = b'a' and the following relations 

a@=qpcy cyy = yor ,%=q@J yS=q8y B y = y @  

c f s - q p y = 1  

ya* = qor* y 

sp* = qf i*s - q(1 - q2)cy'y 

acy" = a*cy + (1 - qzyy*y  

Y*Y = YY' S S " = S " S - ( l - q 2 ) y ' y .  

6a - q - l p y  = 1 @a" = q-lor*p + q-'(l - qZ)y*6 

6a' = cy*6 yp* = @' y 

6y' = q- 'y *6  

pp* = B'p + (1 - qI)(6'6 - cy'or) - (1 - q ) y y 

(12) 

2 2  * 
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The rest commutation relations can be read off from the rule (ab)* = b e d  
We cast the generators into the matrix form 

With the comultiplicatiou A : 4 + 4 @ 4 

the antipode S : A, + A, 

and the counit 6 : 4 -+ C 

4 becomes a Hopf algebra. In fact, it is a *-Hopf algebra, since 

(A(a) )*  = A(u") 

and 

s o  * o S o * = id. 

We define the *-Hopf subalgebra d,(SU,) by the generators 

In a similar way 

(13) 

(14) 

hh* = h*h hn = qnh nh* = q-'h'n 

nn* = q2n*n + ( 1  - q2)((h*h)-' - 1). 
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The Iwasawa decomposition in the quantum context takes the form [131 

0 = w,wd 0 E dq(SL2(c)) 0, E dq(sU2) Wd E d q ( A N q ) .  (17) 

Natural description of commutation relations (12) can be obtained from the construction 
of the quantum double. It was implemented in [17], where &(SL*(QI)) is described as a 
special quantum double of d,(SUZ), and (13) is derived by means of the corresponding 
R-matrix. 

The quantum Lobachevsky space Li is a '-subalgebra of &(SLz(C)) generated by the 
bilinear constituents 

M A  Olshanetsky and V-B K Rogov 

Evidently, * acts as 

p* = p (s)' = s' r' = r .  

We don't need the explicit form of the commutation relations between p ,  s, s* and r-they 
can be derived from (12). 

Introduce a new generator z instead of n 

n = h z .  

Then due to (15). (16) and (18) 

p = H = h*h 5 hh* s = H z  s * = z * H  r = z ' H z + H - I .  (19) 

The triple ( H .  z ,  z') generates the horospherical coordinates in the algebra L:. It follows 
from (12) that 

Hz = q 2 z H  H- ' z  = q-'zH-' z'H = q Z H z *  z*n-l = q - 2 H - l ~ '  
(20) 

ZZ* = qzz*z  + (4' - 1)(1 - H-'). 

Consider now the complex associative algebra U,(SLz)(@) with unit 1, generators A ,  
B ,  C ,  D and the relations 

A D  = D A  = 1 A B  = q B A  B D  = q D B  

(A2 - 0'). [ B ,  C ]  = - 1 
4 -4-' 

In fact, it is the Hopf algebra, where 

A ( A )  = A @ A  

A ( B )  = A 8 B + B 8 D 

A ( D )  = D 8  D 

A ( C )  = A 8 C + C 8 D 



Moreover, UY(SL2(C)) is '-Hopf algebra in duality, where the involution is defined by the 
pairing 

( U * , U )  = (U5 (s(Q))*). (25) 

The element 

is a Casimir element, since it commutes with any U E U,,(SL,(C)) 
The right action of U E U,,(SL2(C)) on .& is defined as [4] 

a . U := (U @ id)(4(a)) 

It is the algebra action: 

a. ( u u )  = ( a .  U )  U 

which satisfies the 'Leihnitz rule' 

( a b ) .  U = x ( a  . u,!)(b ' U : )  

j 

where 4 ( u )  = 1, @U,:. The left action is defined in the similar way 
The right action on the generators takes the form 

We will define now the right action of U,,(SLz(C)) on L:, which endows the latter with 
the structure of the right *-module. For any a E Li define the normal ordering using (12) 

: a ::= Ccka~,,a:.a (31) 
A 



4616 

where afk (u2.k) are monoms depending on or', p*,  y* ,  6' (or, B. y ,  6). Then the right action 
on IL:, which will be denoted as ( a ) .  U, is defined as follows 

M A  Olshanersky and V-B K Rogov 

In particular, from (30) 

( p , s , s ' , r ) . A = ( p , O , s * , O )  ( p , s , s * , r ) . B =  (o,p,O,s*) 

( p ,  s, s*, r ) ,  C = (s, 0, r, 0) ( p ,  s,s*.  r )  . D = (0, s. 0, r ) .  

To obtain the action of generators of Ug(SL2(C)) on the horospheric coordinates it 
is necessary to express them through or*, j3*, y * ,  6* and or, j3, y. S ordering them in 
correspondence with (31), and then applying them to (32). Two expressions have the 
normal order from the very beginning (see (18) and (19)) 

H = or*or + y * y  Hz = or'B + yf8. (33) 

For H-' we can write a representation as a formal series 

It can be proved by induction that 

Here we use the standard notations 

where q = exp(-hI)t, and [ k ] , ~ !  = [k],z[k - 1],2. .. 1. 
The normal order for i and z* can be derived from (33) and (34) 

Z = 5 + K 5 =ff-'p (37) 

and 

00 

(38) = y*~-lor-l = k -% I k f l  k -2 = yor-l, (-1) 4 ( Y )  Y or 
k=O 

t The subscript 2 is used here to distinguish lhis conslant f" the usual Planck constant t i t ,  which is present from 
the very beginning in from of the derivatives in the classical group appromh. 
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Also 

and therefore 

From (37) 

In the same way, from (35) for any r E %, 

Formally, we can consider this relation for any r E C, since H (35) can be defined as a 
positive definite Hermitian operator. 

The relations (40) and (41) demonstrate the action of U,(SL*(C)) on the horosphedcal 
coordinates of IL;. Moreover, using the same notations for this representation as for the 
generators of Uq(SL2(C)), we can prove that in the classical limit equations (40) and (41) 
are transformed in the Lie derivatives (4) 

da = l i  a,A dD = lim a, D 
Y+ 1 Y + l  

ds = lim B dc = lim C. 
Y+ I '1"' 

As for the quantum Casimir (26), it is easy to check that 

(a  is the classical Casimir (6)), as it has to be. 

4. Eigenfunctions of the quantnm Casimir and scattering in spin chains 

The eigenvalue problem 

(f(H, e ,  Z*)) ' a, = - h 2 f ( H ,  z. Z*) (43) 
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where f ( H ,  z ,  z*) is a Laurent series in H ,  z,  z', can in principle be written down explicitly 
by means of the relations from the previous section and the rules (28) and (29). 

In the similar fashion to the classical case, we choose a special form of f ( N ,  z, z*f .  
Let 

M A  Olshanetsky and V-B K Rogov 

where 

is the q-exponent 1151. Then we assume 

and F A ( X )  = C,a,+l(h)H'. Thus 

As follows from (12), 

K*' = (oLy)*-kKk((orY)k, 

It can be found from (29) and (30) for n > 0 that 

(6"). A = q-"$" 

( tn) .  c = - q 1 / 2 [ n ] q ~ ~ + '  

( 5 " ) .  B = q - " 2 [ n ] , ~ ~ - 1  

( c n )  . D = q n p .  

For n 2 0, after some algebra, we obtain 

( K " ) ,  A = q-"K" 

( K " )  . c = -qn+i[2n],2Kn~ - q2n+i[n]q2K"+'  

( I C " ) .  B = 0 

( K " )  D = q " K " .  

Then the following relation 

(Cry)-' = K*- 'H- '+  K 
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Substiruting i t  in (441, we come to 

Therefore, (43) is reduced to 
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It is the lattice counterpart of the Liouville equation ( s t i n  the limit y --f 1, (712 + 0) 
it is transformed in (8). Here the second derivative is replaced on the second difference 
operator. This naive modification of (8) can be predicted easily from the very beginning. 
The less obvious modjfication is the shift of the argument in the potential operator. It will 
of course be crucial for solving the eigenvalue problem exactly. 

Using the shift operator in the form 

exp(h?a)F(H) = F(qH) 

we can rewrite the last relation as 

To solve (46) assume that 

2 -3 
1 L q  ( 4 - 4 - ] ) = 1  

and replace the eigenvalue parameter 

sin ( y )  
sinhhz 

A = [iR],? = - x = C O S ~ Z R .  

Since (46) is the difference operator, put 

H = q-" 

(49) 

In the new variables equation (46) takes the form 

( 1  - Qh+2)C,,,(X) + C.-,(X) = 2 X C " ( X ) .  (52)  

This equation has the form of the recurrence retation for orthogonal polynomials. If we 
put c-1 = 0 and CO = 1, then (51) defines the q-continuous Hermite polynomials, which 
are a particular case of the Rogers-Askey-Ismail polynomials [15], or, equivalently, the 
Macdonald polynomials for the A ,  root system 151. Namely, 

C,(COS~ZR) = C,,(COST~ZR; t 14') It=o (53) 

where C,(cosh~B; fly2) is the Rogers-Askey-Ismail polynomial 

and for the Macdonald polynomials Pn 
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It is worth noting that the degrees of polynomials n now play the role of the 'space' 
variable (51), while their arguments are related to the eigenvalue parameter I (49).(50). 
Note that the argument 0, which defines the energy E = h2/2 by (49), lies in the interval 
0 E [O. 4a/h2). A similar phenomenon also arises for the zonal spherical functions on 
quantum 'non-compact' symmetric spaces (see [2,31, where the case of U,(SU(I.  1)) was 
considered). 

The asymptotic behaviour of c, for n -+ 03 is the following [I51 

Thus, the Harish-Chandra c-function is equal to 

To find a spin chain, which exhibits the same scattering, it is convenient to consider 
the extended theory and switch on the additional parameter t (53). (54). This theory was 
considered in [3]. It was demonstrated there that the Harisb-Chandra c-functions for the 
generic Al Macdonald polynomials give rise for the scalar S-matrix to the scattering of two 
special excitations in the &-model 1161 in the N + 03 regime. It has two parameters-the 
modular parameter T and the anisotropy parameter y ,  In fact, r is a modular parameter of 
an elliptic curve and y is a point on it. They are parameters of the Sklyanin algebra [18-20], 
which allows a solution of the corresponding Yang-Baxter equation. The parameters of the 
Macdonald polynomials are related to the latter as follows: 

= q iy / x r  (56) 

Some interesting solutions corresponding to points in the space (5 ,  y )  were considered 
in 131. In our case, t = 0 (54). Since Imr > 0 and Rer = 0, then y + 00. Simultaneously, 
N - t C O .  

As follows from relation (5.2) of 131, there is duality in the scattering picture in this 
model 

~ 

Thus the same S-matrix can be realized in the ZN-Baxter model in the regime 

y + O  N + 0 .  

5. Conclusion 

We have found that the wavefunctions of the q-Liouville Hamiltonian lie in the same family 
of MacdonaId polynomials as the wavefunctions of the q-Sutherland Hamiltonian [2-41. In 
the former case t = 0, and in the latter i = q (see (54)). The Macdonald polynomials 
have an interpretation as the 'zonal spherical functions' on the Sklyanin quantum algebra 
131. Thus there exists the transition from the usual q = 1 Sutherland Hamiltonian to 
the Liouville quantum mechanics through the Sklyanin quantum algebra. It is natural to 
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conjecture that this transition can be generalized on the arbitrary number of particles. Recall 
that both Hamiltonians can also be considered as two special reductions of the Casimir on 
U,(S&), q 1. But this unification is performed in a different way by increasing the 
degrees of freedom. 

One of the ways to study quantum integrable systems is to put the space variable 
on a lattice. In particular, for the Liouville field theory it was done firstly in [ZI], at 
least quasiclassically. Our approach is different-instead of the discretization of the space 
variable we discretized the zero modes of the Liouville field. It is similar to the substitution 
a continuous gauge group on a discrete subgroup in the Monte Carlo simulations of gauge 
theories. Introducing the lattice is equivalent to introducing an infinite hard wall instead of 
the Liouville exponential potential-the wavefunctions vanish for n < 0. The theory, as a 
modified version of the zero-mode dynamics of 2D gravity, is still ultraviolet-free since for 
small distances the potential vanishes H-* = q%+- = 0 (see (50). (55)). 

On the other hand the system under consideration resembles lhc Ruijsenaars relativistic 
Toda model [14] for two particles, though it does not coincide with it. In spite of the 
latter it allows us to solve it exactly. It is possible also to find the explicit solution in the 
classical case after the substitution ia + p ,  Unfortunately, this solution does not have 
a clear group-theoretical interpretation, like the solutions of the open non-relativistic Toda 
model 161. At the same time the Ruijsenaars solutions are natural q-deformations of the 
non-relativistic Toda solutions. It will be interesting to find a similar interpretation for the 
solution coming from the quantum Lorentz group. 

Starting from the Hamiltonian (46) it is easy to guess the form of the lattice N-body 
Toda quantum mechanics. But i t  will not be easy to justify this Hamiltonian by means 
of the Iwasawa decomposition of & , ( S U N ,  C)) [17] using the same type calculations as 
above. Nevertheless, investigations of q-Whitteker functions in  a general case and their 
relations with representations of quantum groups is plausible. 

The next desirable generalization of this model is i& two-dimcnsional version in the 
quantum and classical form. Note that one of the possible versions of the q-deformed 
classical Liouville field theory can be reconstructed in principle, as in the classical theory, 
from the q-deformed wzw model, proposed, for example, in [22]. 
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